

Apport de l'oxygénothérapie hyperbare dans la prise en charge des plaies du mal perforant plantaire

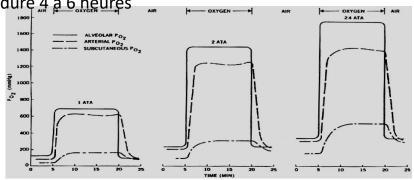
Dr Thomas MASSEGUIN Service de Médecine Hyperbare & Plaie et Cicatrisation CHU de La Réunion

28 & 29 avril 2023 - Stella Matutina

Déclaration de lien d'intérêt

Je ne déclare pas de lien d'intérêt en rapport avec cette présentation.

Administration de l'oxygène par voie respiratoire (systémique) à une pression supérieure à la pression atmosphérique


Effets

Élévation de la pression absolue

- Augmentation du transport de l'oxygène:
 - Augmentation de la quantité d'oxygène dissous dans le sang
 - Déformabilité érythrocytaire
 - Effet sur la microcirculation artériolaire

→ Oxygénation tissulaire de zones hypoxiques qui perdure 4 à 6 heures

Air ambiant	a seesa y	Oxygène pui	Sinciday anostona
1	1	2	3
100	673	1 433	2 193
98	660	1 400	2 150)
(19.7)	20.1	20.1	20.1
0,285	1,88	3,8	6,1
	1 100 98 (19.7)	1 1 1 1 1 1 1 98 660 19.7 20.1	1 1 2 100 673 1 433 98 660 1 400 19.7 20.1 20.1

L'oxygénothérapie hyperbare (OHB)

for 14 day

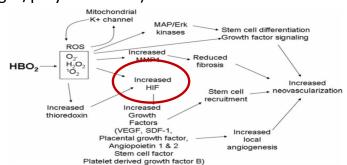
	cytokine	source	HBO treatment	Comment/Outcome	Author, year
	IL-1	Monocytes-macrophages	HBO, 2.4 ATA, 90 min	Inhibits LPS-induced IL-1β synthesis	(Benson et al., 2003)
	TNF-α, IL-1β	Monocytes-macrophages	HBO, 2.0 ATA, 90 min	Inhibits stimulus-induced TNF-α and IL-1β synthesis.	(Inamoto <i>et al.</i> , 1991, Lahat <i>et al.</i> , 1995)
	IL-2	Monocytes	HBO, 2.5ATA, 90 min	Decrease in IL-2 production and IL-2 receptor expression.	(Ginaldi et al., 1991)
	TNF-α	Monocytes-macrophages	HBO, 2.4ATA, 90 min	Inhibits TNF-a production.	(Benson et al., 2003)
<u></u>	TGFβ	Chronic ischaemic wounds in rabbit	HBO, 2.4 ATA, 90 min.	Increases levels of TGFβ and produces a synergistic effect on a chronic wound model in young rabbits, but not in old rabbits.	(Zhao et al., 1998, Bonomo et al., 2000)
7	PDGF-β	Acutely ischaemic wounds in rabbit	HBO, 2.0 ATA, 90 min	Increases expression of PDGF-β receptor.	(Bonomo et al., 2000)
23	VEGF	HUVECs	HBO, 2.5 ATA, 2-8 h	Up regulates VEGF production and release.	(Lee et al., 2006, Eliss et al., 2005)
	IFN-γ	Lymphocytes	HBO, 2 ATA, 90 min	Reduces PMA/PHA-stimulated release of IFN- by lymphocytes.	
3	FGF	Muscle cells	HBO, 3 ATA, 1 h/day	Up regulates FGF expression.	(Asano et al., 2007)

· Effets sur la cicatrisation:

- Néoangiogénèse
- Réplication des fibroblastes
- Synthèse de collagène

Anti-infectieux:

- Bactéricide
- Rétablit les moyens de défense contre les infections (macrophages/polynucléaires)
- Potentialisation de l'action des antibiotiques


Pression d'oxygène mmHg	0	1	2	3,5	5	8	15	20	30	45	60	75	90
Germe													
Clostridium haemolyticum	++	++	++	++	+	0	0						
Peptostreptocoque	++	++	++	++	++	++	+	0	0				i
Clostridium novvi	++	++	++	++	++	++	+	0	0				1
Bacteroides oralis	++	++	++	++	++	++	++	++	+,V	+,V	0	0	1
Bacteroides melanogenicus	++	++	++	++	++	++	++	++,V	++,V	+,V	+,٧	0	0
Bacteroides nucleatum	++	++	++	++	++	++	++	++	++	++	+,V	0	0
Bacteroides fragilis	++	++	++	++	++	++	++	++	++	++	+.٧	0	0

Hyperbaric Oxygen Influences Chronic Wound Healing - a Cellular Level Review

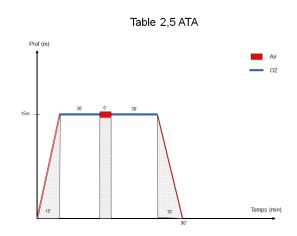
Jiří RŮŽIČKA^{1,2*}, Jiří DEJMEK^{1,2*}, Lukáš BOLEK^{1,2}, Jiří BENEŠ^{1,2}, Jitka KUNCOVÁ^{1,2,3} *These authors contributed equally to this work.

¹Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic, ²Institute of Biophysics, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic. ³Institute of Physiology, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic

Received April 22, 2021 Accepted October 14, 2021

WATTEL F, MATHIEU D. Traité de médecine hyperbare. Paris : Ellipses; 2002

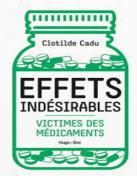
souche ou le temps d'incubation ; 0 : pas de croissance



1 à 2 Séances itératives par jour

Durée 90 min:

- 15 min de compression
- 60 min de traitement
- 10 min de décompression

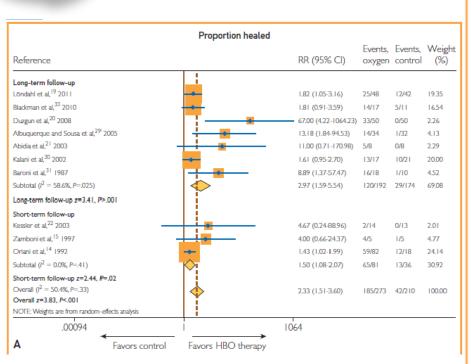


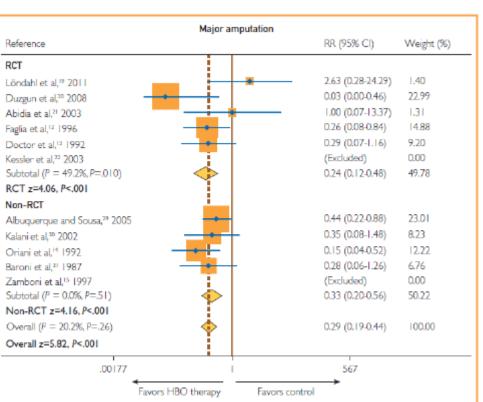
Effets indésirables de l'OHB

• Otites barotraumatiques

Hypoglycémie

• crise convulsive hyperoxique (Effet Paul Bert) 1/an





Systematic review of the effectiveness of hyperbaric oxygenation therapy in the management of chronic diabetic foot ulcers.

Liu R1, Li L, Yang M, Boden G, Yang G.

Consensus Conference

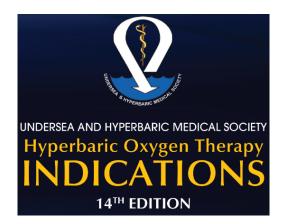
Interstitial cystitis

Tenth European Consensus Conference on Hyperbaric Medicine: recommendations for accepted and non-accepted clinical indications and practice of hyperbaric oxygen treatment

Daniel Mathieu, Alessandro Marroni and Jacek Kot

Diving and Hyperbaric Medicine Volume 47 No. 1 March 2017

Condition	Level of	evidence	Agreement level
	В	C	
Type 1			
CO poisoning	X		Strong agreement
Open fractures with crush injury	X		Strong agreement
Prevention of osteoradionecrosis after	X		Strong agreement
dental extraction			
Osteoradionecrosis (mandible)	X		Strong agreement
Soft tissue radionecrosis (cystitis, proctitis)	X		Strong agreement
Decompression illness		X	Strong agreement
Gas embolism		X	Strong agreement
Anaerobic or mixed bacterial infections		X	Strong agreement
Sudden deafness	X		Strong agreement
Type 2			
Diabetic foot lesions	X		Strong agreement
Compromised skin grafts and musculo-		X	Strong agreement
cutaneous flaps			
Central retinal artery occlusion (CRAO)		X	Strong agreement
Crush Injury without fracture		X	Agreement
Osteoradionecrosis (bones other than mandible)		X	Agreement
Radio-induced lesions of soft tissues		X	Agreement
(other than cystitis and proctitis)			
Surgery and implant in irradiated tissue		X	Agreement
(preventive treatment)			
Ischaemic ulcers		X	Agreement
Refractory chronic osteomyelitis		X	Agreement
Burns, 2nd degree more than 20% BSA		X	Agreement
Pneumatosis cystoides intestinalis		X	Agreement
Neuroblastoma, stage IV		X	Agreement
Type 3			
Brain injury (acute and chronic TBI, chronic stro		X	Agreement
post anoxic encephalopathy) in highly selected p	atients		
Radio-induced lesions of larynx		X	Agreement
Radio-induced lesions of the CNS		X	Agreement
Post-vascular procedure reperfusion syndrome		X	Agreement
Limb replantation		X	Agreement
Selected non-healing wounds secondary		X	Agreement
to systemic processes			
Sickle cell disease		X	Agreement



Evaluation des actes professionnels de Janvier 2007

Pathologies	Pression	Durée de la séance	Nombre habituel de séances	Espacement des séances	Mesures de la PtcO2 sous OHB
Intoxication au CO	2,5 ATA	90 min	1 séance (au grand maximum 5)	NR	Non
Accident de décompression:Traitement initial	2,8 à 4 ATA	Jusqu'à 7 h		NR	Non
Accident de décompression: traitement des déficits résiduels	2,5 ATA	90 min	Jusqu'à 10, voire plus si récupération objective.	2 séances par jour	Non
Embolie gazeuse	4 à 6 ATA	Jusqu'à 7 h	1 ou plus	Dépend de l'évolution clinique	Non
Infection bactérienne à germes anaérobies ou mixtes, nécrosante des tissus mous	2,5 ATA	90 min	2 à 3 séances dans les 24h, puis 10 séances	Dépend de l'évolution clinique	Non
Abcès intracrânien, pleuro- pulmonaire, hépatique	2,5 ATA	90 min	10 séances	Dépend de l'évolution clinique	Non
Ecrasement de membre (fracture ouverte type III Gustilo B et C)	2,5 ATA	90 min	Supérieur à 10	Dépend de l'évolution clinique	Oui, mise en route de l'OHB s PtcO2>20 mmHs
Lésions radio-induites: ostéoradionécrose de la mandibule et cystite radio- induite	2,5 ATA	90 min	20 à 60 séances	Dépend de l'évolution clinique	Non
Pied diabétique	2,5 ATA	90 min	20 à 40 sur 3 à 4 semaines	1 à 2 séances par jour	Oui, mise en route de l'OHB s PtcO2>100mmH
Plaie chronique ischémique non diabétique	2,5 ATA	90 min	10 séances par semaine	2 séances parjour	Oui, mise en route de l'OHB s PtcO2>50mmHg
Surdité brusque	2.5 ATA	90 min	10 séances	Dépend de l'évolution	Non

- > OHB dans les stade 3 ou + pour prévenir les amputations majeures
- > OHB en post opératoire immédiat après chirurgie

IWGDF

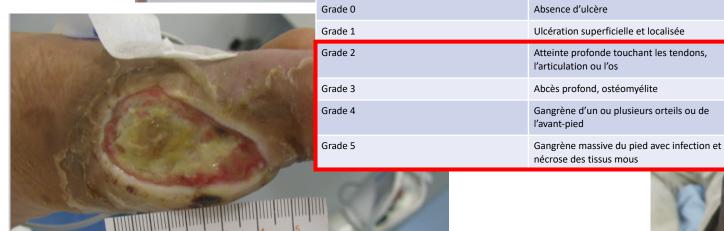
International Working Group on the Diabetic Foot

Groupe international de Travail sur le Pied Diabétique

recommandations de l'IWGDF sur la prévention et la prise en charge du pied diabétique, édition de 2019

List of recommendations

- Remove slough, necrotic tissue, and surrounding callus of a diabetic foot ulcer with sharp debridement in preference to other methods, taking relative contraindications such as pain or severe ischemia into account (GRADE strength of recommendation: strong; quality of evidence: low).
- Dressings should be selected principally on the basis of exudate control, comfort, and cost (strong: low).
- Do not use dressings/applications containing surface antimicrobial agents with the sole aim of accelerating the healing of an ulcer (strong; low).
- Consider the use of the sucrose-octasulfate impregnated dressing as an adjunctive treatment, in addition to best standard of care, in noninfected, neuro-ischaemic diabetic foot ulcers that are difficult to heal (weak; moderate).
- Consider the use of systemic hyperbaric oxygen therapy as an adjunctive treatment in non-healing ischaemic diabetic foot ulcers despite best standard of care (weak; moderate).
- We suggest not using topical oxygen therapy as a primary or adjunctive intervention in diabetic foot ulcers including those that are difficult to heal (weak; low).



eme Édition

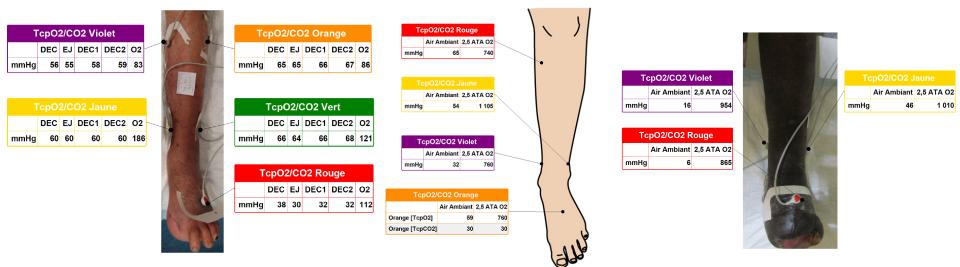
Mal perforant plantaire

- -Retard de cicatrisation
- -Ischémique
- -Infection

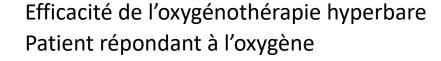
Quelles plaies?

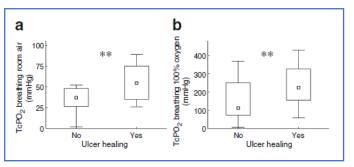
La mesure des pressions transcutanées d'oxygène (PtcO₂)

- · Examen non invasif
- Évalue l'hypoxie tissulaire en air ambiant et sa correction éventuelle sous 0₂ ou sous OHB
- Fonction neuro-vasculaire, consommation d'oxygène locale
- Permet de poser des critères objectifs d'indication d'un traitement par oxygénothérapie hyperbare
- Intérêt pronostic et de suivi de l'évolution

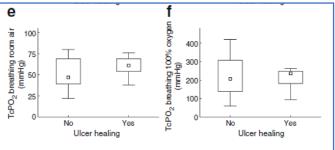


La mesure des pressions transcutanées d'oxygène (PtcO₂)

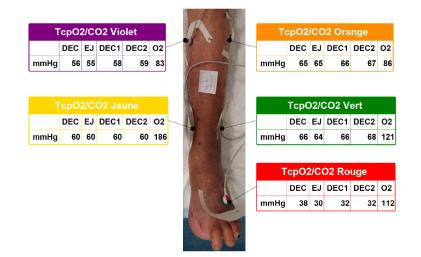



Sélection des patients

Relationship between ulcer healing after hyperbaric oxygen therapy and transcutaneous oximetry, toe blood pressure and ankle-brachial index in patients with diabetes and chronic foot ulcers


M. Löndahl · P. Katzman · C. Hammarlund · A. Nilsson · M. Landin-Olsson

Received: 25 April 2010 / Accepted: 1 September 2010 / Published online: 19 October 2010 © Springer-Verlag 2010



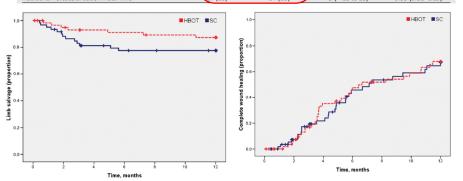
Groupe OHB

Groupe contrôle

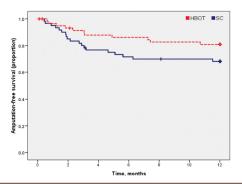
L'OHB n'est pas un substitut aux méthodes de revascularisations optimales

- mise en place pour contourner un geste chirurgical de revascularisation non-indiqué ou contre-indiqué.

- corrige ainsi les conséquences de l'artériopathie mais pas l'artériopathie en elle-même ni ses causes


Controverse

Randomized Controlled Trial > Diabetes Care. 2018 Jan;41(1):112-119. doi: 10.2337/dc17-0654. Epub 2017 Oct 26.


Hyperbaric Oxygen Therapy in the Treatment of Ischemic Lower– Extremity Ulcers in Patients With Diabetes: Results of the DAMO₂CLES Multicenter Randomized Clinical Trial

Katrien T B Santema ¹¹, Robert M Stoekenbroek ¹, Mark J W Koelemay ¹, Jim A Reekers ², Laura M C van Dortmont ³, Armo Oomen ⁴, Luuk Smeets ⁵, Jan J Wever ⁶, Dink A Legemate ¹, Dirk T Ubbink ⁷, DAMOZCLES Study Group

Table 2-Summary of the results						
Intention-to-treat analysis						
	SC (n = 60)	SC+HBOT (n = 60)	RD % (95% CI)	RR (95% CI)		
Complete wound healing						
Complete wound healing at end of follow-up	28 (47)	30 (50)	3 (-14 to 21)	0.94 (0.66-1.33)		
Achieved complete wound healing during study*	29 (48)	33 (55)	7 (-11 to 24)	0.87 (0.60-1.26)		
Median time to complete wound healing, days (SE)	217 (53)	202 (63)				
Limb salvage	47 (78)	53 (88)	10 (-4 to 23)	0.54 (0.23-1.26)		
AFS	41 (68)	49 (82)	13 (-2 to 28)	0.58 (0.30-1.11)		
Freedom from amputations index limb**	31 (52)	38 (63)	12 (-6 to 28)	0.76 (0.50-1.16)		
Overall mortality	9 (15)	5 (8)	7 (-5 to 19)	0.56 (0.20-1.56)		
Additional revascularization index limb***	17 (28)	14 (23)	5 (-11 to 20)	0.98 (0.81-1.19)		

	SC,	SC+HBOT,
	n = 60	n = 60
Mean age, years (SD)	70.6 (11.2)	67.6 (10.0)
Sex, male, n (%)	46 (77)	51 (85)
BMI (kg/m²), mean (SD)	27.1 (4.8)	28.3 (6.0)
Wound diameter, cm, mean (SD) Wound diameter <3 cm Wound diameter ≥3 cm	3.5 (2.9) 33 (55) 27 (45)	3.2 (2.7) 34 (57) 26 (43)
Wound duration in months, mean (SD)	6.0 (6.8)	5.6 (6.4)
Wound cla ssification, n (%) Wagner grade II Wagner grade III Wagner grade IV	35 (58) 16 (27) 9 (15)	27 (45) 20 (33) 13 (22)

Analyse économique

Int J Technol Assess Health Care. 2008 Spring;24(2):178-83. doi: 10.1017/S0266462308080252.

Cost-effectiveness and budget impact of adjunctive hyperbaric oxygen therapy for diabetic foot ulcers.

Chuck AW1, Hailey D, Jacobs P, Perry DC.

HBOT: 149 (65 ans) 30-40 sc	Control: 156
Moins d'amputation mineure Moins d'amputation majeure 6% Augmentation chance de guérison 56% Amélioration échelle qualité de vie (QALYs:3,64) 12 ans: 40695 \$ Economie: CND\$14.4-19.7 million/year over 4 years	Echelle qualité de vie (QALYs:3,01) 12 ans: 49786 \$

3; 63; Diabète type 2; HTA; AOMI

Toujeo; Diamicron; Janumet; Amlodipine+Valsartan; Tahor; Kardégic

- Plaie du bord externe du talon droit suite d'un trauma avec des cailloux dans la chaussure.
- Apparition d'inflammation locale avec mise pendant 48h sous Pyostacine.
- Prise en charge chirurgicale pour excision des tissus nécrosés et infectés.

- Soins de pansement avec du miel et du sucre. Mauvaise évolution de la plaie avec surinfection. Adressée aux urgences pour nécrose du talon droit.

- Angio TDM: Sténoses pluri étagées des artères tibiales (antérieure et postérieure) bilatérales. Discrètes irrégularités corticales calcanéennes suspecte d'ostéite
- <u>IRM talon</u>: Ostéite débutante du pôle postéro-inférieur du calcanéum en regard de la perte de substance cutanée

Angioplastie de recanalisation tibiale antérieure droite + fibulaire droite + arche plantaire et détersion talon avec prélèvement ATBTTT: TAZOCILLINE 4gx3 puis Bi-antibiothérapie de 6 semaines qui été prolongée de 3 semaines

8 mois

Conclusion

- Grade Wagner 3 +; Wlfl:2
- Prise en charge multidisciplinaire (diabétologue, médecins traitant, infirmiers, diététiciens; chirurgiens, angiologue, prothésiste...)
 - soins locaux (pansements)
 - mise en décharge,
 - pharmacothérapie (antibiotiques),
 - chirurgie (débridement, revascularisation, amputation).
 - Contrôle optimal de la glycémie
- Coopération avec les services émetteurs qu'ils soient publics, privés ou médecins de ville.
- Prise en charge sélective (l'OHB ne solutionne pas tous les cas), importance de la prise de Pression transcutanée d'O2
- Séances consécutives 1 à2/jour; 5 à 6 fois/semaine; entre 30 et 40 séances
- Réduit le risque d'amputation majeure
- Surveillance de l'évolution de la plaie quotidienne, d'où la nécessité d'une équipe paramédicale très bien formée à la surveillance et la réalisation des pansements.

